Study on the Permeability Enhancement of Propped Fractures under the Action of a Coal Fine Plugging Removal Agent

The retention of coal fines in propped fractures impedes the efficient flow of gas and water, leading to a substantial decrease in coal seam permeability and gas production efficiency. In this article, a coal fine plugging removal agent with good dispersion stability and powerful powder-carrying cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-06, Vol.9 (24), p.26336-26346
Hauptverfasser: Hu, Shengyong, Li, Guofu, Chen, Zhaoying, Zhang, Xitu, Su, Yan, Sun, Xiaonan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The retention of coal fines in propped fractures impedes the efficient flow of gas and water, leading to a substantial decrease in coal seam permeability and gas production efficiency. In this article, a coal fine plugging removal agent with good dispersion stability and powerful powder-carrying capacity was developed to study the coal fine plugging removal and permeability enhancement in the propped fracture. The results show that 0.8% SDS + 0.4% NaCl + 0.8% BS-12 was the most effective coal fine plugging removal agent compounding system. Increasing the injection rate of the plugging removal agent and performing recycles of intermittent unblocking when it was used as a plugging agent will effectively enhance the gas–liquid two-phase effective permeability of propped fractures and improve the release of retained coal fines. After three recycles of intermittent unblocking, the coal fine discharging rate can be increased to more than 90%, resulting in a 3.88 times increase of the gas–liquid two-phase permeability compared to that with the single unblocking cycle. This method has important practical significance and theoretical value for solving the problem of coal fine plugging in fractures and ensuring the stable and efficient discharge of coalbed gas–water–coal fines.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c02367