Band Selection for Dehazing Algorithms Applied to Hyperspectral Images in the Visible Range

Images captured under bad weather conditions (e.g., fog, haze, mist, dust, etc.), suffer from poor contrast and visibility, and color distortions. The severity of this degradation depends on the distance, the density of the atmospheric particles and the wavelength. We analyzed eight single image deh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (17), p.5935
Hauptverfasser: Fernández-Carvelo, Sol, Martínez-Domingo, Miguel Ángel, Valero, Eva M., Romero, Javier, Nieves, Juan Luis, Hernández-Andrés, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Images captured under bad weather conditions (e.g., fog, haze, mist, dust, etc.), suffer from poor contrast and visibility, and color distortions. The severity of this degradation depends on the distance, the density of the atmospheric particles and the wavelength. We analyzed eight single image dehazing algorithms representative of different strategies and originally developed for RGB images, over a database of hazy spectral images in the visible range. We carried out a brute force search to find the optimum three wavelengths according to a new combined image quality metric. The optimal triplet of monochromatic bands depends on the dehazing algorithm used and, in most cases, the different bands are quite close to each other. According to our proposed combined metric, the best method is the artificial multiple exposure image fusion (AMEF). If all wavelengths within the range 450–720 nm are used to build a sRGB renderization of the imagaes, the two best-performing methods are AMEF and the contrast limited adaptive histogram equalization (CLAHE), with very similar quality of the dehazed images. Our results show that the performance of the algorithms critically depends on the signal balance and the information present in the three channels of the input image. The capture time can be considerably shortened, and the capture device simplified by using a triplet of bands instead of the full wavelength range for dehazing purposes, although the selection of the bands must be performed specifically for a given algorithm.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21175935