Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes

Enhancing hepatic gluconeogenesis is one of the main modes of meeting the glucose requirement of dairy cows. This study attempted to determine whether the gluconeogenesis precursor propionate had an effect on the expression of the main genes involved in gluconeogenesis in calf hepatocytes and elucid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal Nutrition 2023-12, Vol.15 (4), p.88-98
Hauptverfasser: Wang, Guo Yan, Qin, Sen Lin, Zheng, Yi Ning, Geng, Hui Jun, Chen, Lei, Yao, Jun Hu, Deng, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhancing hepatic gluconeogenesis is one of the main modes of meeting the glucose requirement of dairy cows. This study attempted to determine whether the gluconeogenesis precursor propionate had an effect on the expression of the main genes involved in gluconeogenesis in calf hepatocytes and elucidate the associated mechanisms. Calf hepatocytes were obtained from 5 healthy calves (1 d old; 30 to 40 kg) and exposed to 0-, 1-, 2.5-, or 5-mM sodium propionate (NaP), which is known to promote the expression of genes involved in the gluconeogenesis pathway, including fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. With regard to the underlying mechanism, propionate promoted the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, hepatocyte nuclear factor 4, and forkhead box O1 (transcription factors that regulate the expression of hepatic gluconeogenic genes) by promoting mammalian target of rapamycin complex 1 (mTORC1), but inhibiting mTORC2 activity (P 
ISSN:2405-6545
2405-6383
DOI:10.1016/j.aninu.2023.07.001