A Flexible Interdigital Electrode Used in Skin Penetration Promotion and Evaluation with Electroporation and Reverse Iontophoresis Synergistically

Skin penetration is related to efficiencies of drug delivery or ISF extraction. Normally, the macro-electrode is employed in skin permeability promotion and evaluation, which has the disadvantages of easily causing skin damage when using electroporation or reverse iontophoresis by alone; furthermore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-05, Vol.18 (5), p.1431
Hauptverfasser: Zhao, Rongjian, Wang, Chenshuo, Lu, Fei, Du, Lidong, Fang, Zhen, Guo, Xiuhua, Liu, Jen-Tsai, Chen, Ching-Jung, Zhao, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skin penetration is related to efficiencies of drug delivery or ISF extraction. Normally, the macro-electrode is employed in skin permeability promotion and evaluation, which has the disadvantages of easily causing skin damage when using electroporation or reverse iontophoresis by alone; furthermore, it has large measurement error, low sensitivity, and difficulty in integration. To resolve these issues, this paper presents a flexible interdigital microelectrode for evaluating skin penetration by sensing impedance and a method of synergistical combination of electroporation and reverse iontophoresis to promote skin penetration. First, a flexible interdigital microelectrode was designed with a minimal configuration circuit of electroporation and reverse iontophoresis for future wearable application. Due to the variation of the skin impedance correlated with many factors, relative changes of it were recorded at the end of supply, different voltage, or constant current, times, and duration. It is found that the better results can be obtained by using electroporation for 5 min then reverse iontophoresis for 12 min. By synergistically using electroporation and reverse iontophoresis, the penetration of skin is promoted. The results tested in vivo suggest that the developed microelectrode can be applied to evaluate and promote the skin penetration and the designed method promises to leave the skin without damage. The electrode and the method may be beneficial for designing noninvasive glucose sensors.
ISSN:1424-8220
1424-8220
DOI:10.3390/S18051431