A Practical Data-Gathering Algorithm for Lossy Wireless Sensor Networks Employing Distributed Data Storage and Compressive Sensing

Reliability and energy efficiency are two key considerations when designing a compressive sensing (CS)-based data-gathering scheme. Most researchers assume there is no packets loss, thus, they focus only on reducing the energy consumption in wireless sensor networks (WSNs) while setting reliability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-09, Vol.18 (10), p.3221
Hauptverfasser: Zhang, Ce, Li, Ou, Liu, Guangyi, Li, Mingxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliability and energy efficiency are two key considerations when designing a compressive sensing (CS)-based data-gathering scheme. Most researchers assume there is no packets loss, thus, they focus only on reducing the energy consumption in wireless sensor networks (WSNs) while setting reliability concerns aside. To balance the performance⁻energy trade-off in lossy WSNs, a distributed data storage (DDS) and gathering scheme based on CS (CS-DDSG) is introduced, which combines CS and DDS. CS-DDSG utilizes broadcast properties to resist the impact of packet loss rates. Neighboring nodes receive packets with process constraints imposed to decrease the volume of both transmissions and receptions. The mobile sink randomly queries nodes and constructs a measurement matrix based on received data with the purpose of avoiding measuring the lossy nodes. Additionally, we demonstrate how this measurement matrix satisfies the restricted isometry property. To analyze the efficiency of the proposed scheme, an expression that reflects the total number of transmissions and receptions is formulated via random geometric graph theory. Simulation results indicate that our scheme achieves high precision for unreliable links and reduces the number of transmissions, receptions and fusions. Thus, our proposed CS-DDSG approach effectively balances energy consumption and reconstruction accuracy.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18103221