Fault-Tolerant Quantum Algorithm for Symmetry-Adapted Perturbation Theory

The efficient computation of observables beyond the total energy is a key challenge and opportunity for fault-tolerant quantum computing approaches in quantum chemistry. Here, we consider the symmetry-adapted perturbation-theory (SAPT) components of the interaction energy as a prototypical example o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX quantum 2024-03, Vol.5 (1), p.010336, Article 010336
Hauptverfasser: Cortes, Cristian L., Loipersberger, Matthias, Parrish, Robert M., Morley-Short, Sam, Pol, William, Sim, Sukin, Steudtner, Mark, Tautermann, Christofer S., Degroote, Matthias, Moll, Nikolaj, Santagati, Raffaele, Streif, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient computation of observables beyond the total energy is a key challenge and opportunity for fault-tolerant quantum computing approaches in quantum chemistry. Here, we consider the symmetry-adapted perturbation-theory (SAPT) components of the interaction energy as a prototypical example of such an observable. We provide a guide for calculating this observable on a fault-tolerant quantum computer while optimizing the required computational resources. Specifically, we present a quantum algorithm that estimates interaction energies at the first-order SAPT level with a Heisenberg-limited scaling. To this end, we exploit a high-order tensor-factorization and block-encoding technique that efficiently represents each SAPT observable. To quantify the computational cost of our methodology, we provide resource estimates in terms of the required number of logical qubits and Toffoli gates to execute our algorithm for a range of benchmark molecules, also taking into account the cost of the eigenstate preparation and the cost of block encoding the SAPT observables. Finally, we perform the resource estimation for a heme and artemisinin complex as a representative large-scale system encountered in drug design, highlighting the performance of our algorithm in this new benchmark study and discussing possible bottlenecks that may be improved in future work.
ISSN:2691-3399
2691-3399
DOI:10.1103/PRXQuantum.5.010336