Gaussian Integer Solutions of the Diophantine Equation x^4+y^4=z^3 for x≠ y

The investigation of determining solutions for the Diophantine equation  over the Gaussian integer ring for the specific case of  is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majallat Baghdād lil-ʻulūm 2023-10, Vol.20 (5)
Hauptverfasser: Ismail, Shahrina, Atan, Kamel Ariffin Mohd, Viscarra, Diego Sejas, Yow, Kai Siong
Format: Artikel
Sprache:ara ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The investigation of determining solutions for the Diophantine equation  over the Gaussian integer ring for the specific case of  is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
ISSN:2078-8665
2411-7986
DOI:10.21123/bsj.2023.7344