Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis

Endometriosis, a chronic disorder characterised by the presence of endometrial-like tissue outside the uterus, is associated with iron overload and oxidative stress in the lesion. Although it is well established that iron overload can trigger ferroptosis, the results of previous studies on ferroptos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death discovery 2022-01, Vol.8 (1), p.29-29, Article 29
Hauptverfasser: Li, Guojing, Lin, Yu, Zhang, Yili, Gu, Nihao, Yang, Bingxin, Shan, Shan, Liu, Na, Ouyang, Jing, Yang, Yisai, Sun, Feng, Xu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endometriosis, a chronic disorder characterised by the presence of endometrial-like tissue outside the uterus, is associated with iron overload and oxidative stress in the lesion. Although it is well established that iron overload can trigger ferroptosis, the results of previous studies on ferroptosis resistance and ferroptosis in endometriotic lesions are paradoxical. Here, we found that some stromal cells of the cyst walls that were in contact with the cyst fluid underwent ferroptosis. Surprisingly, endometrial stromal cell ferroptosis triggered the production of angiogenic, inflammatory and growth cytokines. In particular, angiogenic cytokines, such as vascular endothelial growth factor A (VEGFA) and interleukin 8 (IL8), promoted human umbilical vein endothelial cell (HUVEC) vascular formation in vitro. Moreover, we found that inhibition of p38 mitogen-activated protein kinase/signal transducer and activator of transcription 6 (p38 MAPK/STAT6) signalling represses VEGFA and IL8 expression when endometrial stromal cells undergo ferroptosis. Notably, VEGFA and IL8 showed localised expression and were significantly upregulated in ectopic lesions compared to control and eutopic endometrium samples from patients with endometriosis. Thus, our study reveals that endometrial stromal cell ferroptosis in the ovarian endometrioma may trigger cytokine secretion and promote angiogenesis of adjacent lesions via paracrine actions to drive the development of endometriosis, providing a rationale for translation into clinical practice and developing drugs for endometriosis.
ISSN:2058-7716
2058-7716
DOI:10.1038/s41420-022-00821-z