Structural Characterization and Dynamics of a Layered 2D Perovskite [NH3(CH2)5NH3]MnCl4 Crystal near Phase Transition Temperature

[NH3(CH2)5NH3]MnCl4 crystals are grown via slow evaporation, and the crystal undergoes a phase transition at 298 K (TC) according to differential scanning calorimetry, and the structures determined via X-ray diffraction at 173 and 333 K are orthorhombic systems in the space group Imma. These results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2022-09, Vol.12 (9), p.1298
1. Verfasser: Lim, Ae Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[NH3(CH2)5NH3]MnCl4 crystals are grown via slow evaporation, and the crystal undergoes a phase transition at 298 K (TC) according to differential scanning calorimetry, and the structures determined via X-ray diffraction at 173 and 333 K are orthorhombic systems in the space group Imma. These results differed slightly from those previously reported, and the reasons for this are analyzed. The thermal stability is relatively high, with a thermal decomposition temperature of approximately 570 K. The 1H spin-lattice relaxation times t1ρ exhibited very large variations, as indicated by the large thermal displacement around the 1H atoms, suggesting energy transfer at ~TC, even if no structural changes occurred. The influences of the chemical shifts of 1H of NH3 and short t1ρ of C1 adjacent to NH3 in cation are insignificant, indicating a minor change in the N−H⋯Cl hydrogen bond related to the coordination geometry of the MnCl6 octahedron. These properties will be make it a potential application for eco-friendly solar cells.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12091298