RNA targeting and cleavage by the type III-Dv CRISPR effector complex

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction 1 – 5 . Target RNA cleavage at regular intervals is characteristic of type III effector complexes 6 – 8 . Here, we determine the str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3324-3324, Article 3324
Hauptverfasser: Schwartz, Evan A., Bravo, Jack P. K., Ahsan, Mohd, Macias, Luis A., McCafferty, Caitlyn L., Dangerfield, Tyler L., Walker, Jada N., Brodbelt, Jennifer S., Palermo, Giulia, Fineran, Peter C., Fagerlund, Robert D., Taylor, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction 1 – 5 . Target RNA cleavage at regular intervals is characteristic of type III effector complexes 6 – 8 . Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors 9 , 10 , in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2′-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes. Here, Schwartz, Bravo, and Ahsan et al. show how multi-subunit fusion proteins are arranged around a crRNA in a type III CRISPR-Cas effector to cleave target RNA. Structures and molecular dynamics of this complex show three distinct active sites that can be used for programmable RNA cleavage.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47506-y