Analytical and Numerical Investigation of Non-Newtonian Droplet Breakup in Asymmetric T-junction

In this paper, an analytical investigation and 3D numerical simulation are presented for the breakup of floating non-Newtonian droplets in a non-Newtonian fluid. The considered geometry is a T-junction with unequal-width branches that can generate droplets with un-equal size. There is a very good ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied fluid mechanics 2022-03, Vol.15 (2), p.491-503
Hauptverfasser: Kiani, M J, Bedram, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an analytical investigation and 3D numerical simulation are presented for the breakup of floating non-Newtonian droplets in a non-Newtonian fluid. The considered geometry is a T-junction with unequal-width branches that can generate droplets with un-equal size. There is a very good agreement between the analytical solution and numerical simulation results obtained in this research. Various quantities such as branches flow rate ratio, branches velocity ratio, droplet’s length in each branch, the whole length of the droplet, vorticity and pressure have been investigated during the breakup process in this study. The results showed that the branches flow rate ratio and the branches velocity ratio were constant during the breakup process. It was also observed that the length of the droplet in each of the branches and the whole length of the droplet increased linearly during the breakup process. Also, the vorticity has its maximum at the breakup moment. ‎‎
ISSN:1735-3572
1735-3645
DOI:10.47176/jafm.15.02.32774