Deep combining of local phase quantization and histogram of oriented gradients for indoor positioning based on smartphone camera

To achieve high accuracy in indoor positioning using a smartphone, there are two limitations: (1) limited computational and memory resources of the smartphone and (2) the human walking in large buildings. To address these issues, we propose a new feature descriptor by deeply combining histogram of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks 2017-01, Vol.13 (1), p.155014771668697
Hauptverfasser: Jiao, Jichao, Deng, Zhongliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve high accuracy in indoor positioning using a smartphone, there are two limitations: (1) limited computational and memory resources of the smartphone and (2) the human walking in large buildings. To address these issues, we propose a new feature descriptor by deeply combining histogram of oriented gradients and local phase quantization. This feature is a local phase quantization of a salient histogram of oriented gradient visualizing image, which is robust in indoor scenarios. Moreover, we introduce a base station–based indoor positioning system for assisting to reduce the image matching at runtime. The experimental results show that accurate and efficient indoor location positioning is achieved.
ISSN:1550-1477
1550-1477
DOI:10.1177/1550147716686978