Hearing recovery prediction and prognostic factors of idiopathic sudden sensorineural hearing loss: a retrospective analysis with a deep neural network model
•Various machine learning methods used to predict hearing recovery in ISSHL patients.•The deep neural network method showed the highest predictive performance.•Initial and early post-treatment hearing levels were significant prognostic factors.•Machine learning may help predict ISSHL prognosis, as s...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of otorhinolaryngology 2023-07, Vol.89 (4), p.101273-101273, Article 101273 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Various machine learning methods used to predict hearing recovery in ISSHL patients.•The deep neural network method showed the highest predictive performance.•Initial and early post-treatment hearing levels were significant prognostic factors.•Machine learning may help predict ISSHL prognosis, as shown in the study.
Idiopathic Sudden Sensorineural Hearing Loss (ISSHL) is an otologic emergency, and an early prediction of prognosis may facilitate proper treatment. Therefore, we investigated the prognostic factors for predicting the recovery in patients with ISSHL treated with combined treatment method using machine learning models.
We retrospectively reviewed the medical records of 298 patients with ISSHL at a tertiary medical institution between January 2015 and September 2020. Fifty-two variables were analyzed to predict hearing recovery. Recovery was defined using Siegel’s criteria, and the patients were categorized into recovery and non-recovery groups. Recovery was predicted by various machine learning models. In addition, the prognostic factors were analyzed using the difference in the loss function.
There were significant differences in variables including age, hypertension, previous hearing loss, ear fullness, duration of hospital admission, initial hearing level of the affected and unaffected ears, and post-treatment hearing level between recovery and non-recovery groups. The deep neural network model showed the highest predictive performance (accuracy, 88.81%; area under the receiver operating characteristic curve, 0.9448). In addition, initial hearing level of affected and non-affected ear, post-treatment (2-weeks) hearing level of affected ear were significant factors for predicting the prognosis.
The deep neural network model showed the highest predictive performance for recovery in patients with ISSHL. Some factors with prognostic value were identified. Further studies using a larger patient population are warranted.
Level 4. |
---|---|
ISSN: | 1808-8694 1808-8686 1808-8686 |
DOI: | 10.1016/j.bjorl.2023.04.001 |