A Radial Basis Scale Conjugate Gradient Deep Neural Network for the Monkeypox Transmission System

The motive of this study is to provide the numerical performances of the monkeypox transmission system (MTS) by applying the novel stochastic procedure based on the radial basis scale conjugate gradient deep neural network (RB-SCGDNN). Twelve and twenty numbers of neurons were taken in the deep neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-02, Vol.11 (4), p.975
Hauptverfasser: Sabir, Zulqurnain, Said, Salem Ben, Guirao, Juan L. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The motive of this study is to provide the numerical performances of the monkeypox transmission system (MTS) by applying the novel stochastic procedure based on the radial basis scale conjugate gradient deep neural network (RB-SCGDNN). Twelve and twenty numbers of neurons were taken in the deep neural network process in first and second hidden layers. The MTS dynamics were divided into rodent and human, the human was further categorized into susceptible, infectious, exposed, clinically ill, and recovered, whereas the rodent was classified into susceptible, infected, and exposed. The construction of dataset was provided through the Adams method that was refined further by using the training, validation, and testing process with the statics of 0.15, 0.13 and 0.72. The exactness of the RB-SCGDNN is presented by using the comparison of proposed and reference results, which was further updated through the negligible absolute error and different statistical performances to solve the nonlinear MTS.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11040975