Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-10, Vol.7 (1), p.13256-12, Article 13256
Hauptverfasser: Wang, Zhu-Jun, Dong, Jichen, Cui, Yi, Eres, Gyula, Timpe, Olaf, Fu, Qiang, Ding, Feng, Schloegl, R., Willinger, Marc-Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp 2 carbon nanostructures in between graphene and graphite. Controlled preparation of few-layer graphene is a promising, yet challenging technological protocol. Here, the authors perform real-time imaging during chemical vapour deposition growth and hydrogen etching, to gain insight into layer-dependent growth mechanisms and graphene-substrate interaction.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13256