Thermal experiments with the Asian bush mosquito (Aedes japonicus japonicus) (Diptera: Culicidae) and implications for its distribution in Germany

As ectothermic animals, temperature influences insects in almost every aspect. The potential disease spreading Asian bush mosquito (Aedes japonicus japonicus) is native to temperate East Asia but invasive in several parts of the world. We report on the previously poorly understood temperature-depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasites & vectors 2018-02, Vol.11 (1), p.81-81, Article 81
Hauptverfasser: Reuss, Friederike, Wieser, Andreas, Niamir, Aidin, Bálint, Miklós, Kuch, Ulrich, Pfenninger, Markus, Müller, Ruth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As ectothermic animals, temperature influences insects in almost every aspect. The potential disease spreading Asian bush mosquito (Aedes japonicus japonicus) is native to temperate East Asia but invasive in several parts of the world. We report on the previously poorly understood temperature-dependence of its life history under laboratory conditions to understand invasion processes and to model temperature niches. To evaluate winter survival, eggs were exposed between 1 day and 14 days to low temperatures (5 °C, 0 °C, -5 °C and -9 °C). Hatching success was drastically decreased after exposure to 0 °C and -5 °C, and the minimal hatching success of 0% was reached at -9 °C after two days. We then exposed larvae to 14 temperatures and assessed their life trait parameters. Larval survival to adulthood was only possible between 10 °C and 31 °C. Based on this, we modelled the optimal (25 °C), minimal (7 °C) and maximal (31 °C) temperature for cumulative female survival. The time to adult emergence ranges from 12 days to 58 days depending on temperature. We used an age-at-emergence-temperature model to calculate the number of potential generations per year for the Asian bush mosquito in Germany with an average of 4.72 potential generations. At lower temperatures, individuals grew larger than at higher temperatures with female R1 length ranging from 3.04 ± 0.1 mm at 31 °C to 4.26 ± 0.2 mm at 15 °C. Reduced egg hatch after exposure to sub-zero temperatures prohibits the establishment of the Asian bush mosquito in large parts of Germany. Larval overwintering is not possible at temperature ≤ 5 °C. The many potential generations displayed per year may contribute to the species' invasion success. This study on the thermal ecology of the Asian bush mosquito adds to our knowledge on the temperature dependence of the species and data could be incorporated in epidemiological and population dynamic modelling.
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-018-2659-1