Digitization of Handwritten Chess Scoresheets with a BiLSTM Network

During an Over-the-Board (OTB) chess event, all players are required to record their moves strictly by hand, and later the event organizers are required to digitize these sheets for official records. This is a very time-consuming process, and in this paper we present an alternate workflow of digitiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2022-01, Vol.8 (2), p.31
Hauptverfasser: Majid, Nishatul, Eicher, Owen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During an Over-the-Board (OTB) chess event, all players are required to record their moves strictly by hand, and later the event organizers are required to digitize these sheets for official records. This is a very time-consuming process, and in this paper we present an alternate workflow of digitizing scoresheets using a BiLSTM network. Starting with a pretrained network for standard Latin handwriting recognition, we imposed chess-specific restrictions and trained with our Handwritten Chess Scoresheet (HCS) dataset. We developed two post-processing strategies utilizing the facts that we have two copies of each scoresheet (both players are required to write the entire game), and we can easily check if a move is valid. The autonomous post-processing requires no human interaction and achieves a Move Recognition Accuracy (MRA) around 95%. The semi-autonomous approach, which requires requesting user input on unsettling cases, increases the MRA to around 99% while interrupting only on 4% moves. This is a major extension of the very first handwritten chess move recognition work reported by us in September 2021, and we believe this has the potential to revolutionize the scoresheet digitization process for the thousands of chess events that happen every day.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging8020031