Fixed Point Results for $F$-Hardy-Rogers Contractions via Mann's Iteration Process in Complete Convex $b$-Metric Spaces
In this paper, we give a definition of the $F$-Hardy-Rogers contraction of Nadler type by eliminating the conditions $(F3)$ and $(F4)$. And, we obtain some fixed point theorems for such mappings using Mann's iteration process in complete convex $b$-metric spaces. We also give an example in orde...
Gespeichert in:
Veröffentlicht in: | Sahand communications in mathematical analysis 2022-06, Vol.19 (2), p.15-32 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a definition of the $F$-Hardy-Rogers contraction of Nadler type by eliminating the conditions $(F3)$ and $(F4)$. And, we obtain some fixed point theorems for such mappings using Mann's iteration process in complete convex $b$-metric spaces. We also give an example in order to support the main results, which generalize some results in [5,6]. |
---|---|
ISSN: | 2322-5807 2423-3900 |
DOI: | 10.22130/scma.2022.528127.929 |