Fixed Point Results for $F$-Hardy-Rogers Contractions via Mann's Iteration Process in Complete Convex $b$-Metric Spaces

In this paper, we give a definition of the $F$-Hardy-Rogers contraction of Nadler type by eliminating the conditions $(F3)$ and $(F4)$. And, we obtain some fixed point theorems for such mappings using Mann's iteration process in complete convex $b$-metric spaces. We also give an example in orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sahand communications in mathematical analysis 2022-06, Vol.19 (2), p.15-32
1. Verfasser: Isa Yildirim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a definition of the $F$-Hardy-Rogers contraction of Nadler type by eliminating the conditions $(F3)$ and $(F4)$. And, we obtain some fixed point theorems for such mappings using Mann's iteration process in complete convex $b$-metric spaces. We also give an example in order to support the main results,  which generalize some results in [5,6].
ISSN:2322-5807
2423-3900
DOI:10.22130/scma.2022.528127.929