C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import

Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2020-03, Vol.9
Hauptverfasser: Hayes, Lindsey R, Duan, Lauren, Bowen, Kelly, Kalab, Petr, Rothstein, Jeffrey D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to co-precipitate with the arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import of importin β, importin α/β, and transportin cargoes in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to nucleocytoplasmic transport protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with cargo loading on karyopherins.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.51685