Deposition and bioconversion law of β-carotene in laying hens after long-term supplementation under adequate vitamin A status in the diet

β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2023-11, Vol.102 (11), p.103046, Article 103046
Hauptverfasser: Miao, Qixiang, Tang, Chaohua, Yang, Youyou, Zhao, Qingyu, Li, Fadi, Qin, Yuchang, Zhang, Junmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of β-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary β-carotene treatment had no significant effects on laying hens’ production performance and egg quality (P > 0.05), except the yolk color. The deposition of β-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the β-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in β-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of β-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of β-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, β-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of β-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2023.103046