Limited-Angle CT Reconstruction with Generative Adversarial Network Sinogram Inpainting and Unsupervised Artifact Removal

High-quality limited-angle computed tomography (CT) reconstruction is in high demand in the medical field. Being unlimited by the pairing of sinogram and the reconstructed image, unsupervised methods have attracted wide attention from researchers. The reconstruction limit of the existing unsupervise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-06, Vol.12 (12), p.6268
Hauptverfasser: Xie, En, Ni, Peijun, Zhang, Rongfan, Li, Xiongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-quality limited-angle computed tomography (CT) reconstruction is in high demand in the medical field. Being unlimited by the pairing of sinogram and the reconstructed image, unsupervised methods have attracted wide attention from researchers. The reconstruction limit of the existing unsupervised reconstruction methods, however, is to use [0°, 120°] of projection data, and the quality of the reconstruction still has room for improvement. In this paper, we propose a limited-angle CT reconstruction generative adversarial network based on sinogram inpainting and unsupervised artifact removal to further reduce the angle range limit and to improve the image quality. We collected a large number of CT lung and head images and Radon transformed them into missing sinograms. Sinogram inpainting network is developed to complete missing sinograms, based on which the filtered back projection algorithm can output images with most artifacts removed; then, these images are mapped to artifact-free images by using artifact removal network. Finally, we generated reconstruction results sized 512×512 that are comparable to full-scan reconstruction using only [0°, 90°] of limited sinogram projection data. Compared with the current unsupervised methods, the proposed method can reconstruct images of higher quality.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12126268