Untargeted Ultrahigh-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap Mass Spectrometry (UHPLC-HRMS) Metabolomics Reveals Propolis Markers of Greek and Chinese Origin
Chemical composition of propolis depends on the plant source and thus on the geographic and climatic characteristics of the site of collection. The aim of this study was to investigate the chemical profile of Greek and Chinese propolis extracts from different regions and suggest similarities and dif...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-01, Vol.26 (2), p.456 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical composition of propolis depends on the plant source and thus on the geographic and climatic characteristics of the site of collection. The aim of this study was to investigate the chemical profile of Greek and Chinese propolis extracts from different regions and suggest similarities and differences between them. Untargeted ultrahigh-performance liquid chromatography coupled to hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-HRMS) method was developed and 22 and 23 propolis samples from Greece and China, respectively, were analyzed. The experimental data led to the observation that there is considerable variability in terms of quality of the distinctive propolis samples. Partial least squares - discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) models were constructed and allowed the identification of significant features for sample discrimination, adding relevant information for the identification of class-determining metabolites. Chinese samples overexpressed compounds that are characteristic of the poplar type propolis, whereas Greek samples overexpress the latter and the diterpenes characteristic of the Mediterranean propolis type. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26020456 |