Coleman–Weinberg potential in p-adic field theory

In this paper, we study λ ϕ 4 scalar field theory defined on the unramified extension of p-adic numbers Q p n . For different “space-time” dimensions n , we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2020-09, Vol.80 (9), p.1-10, Article 859
Hauptverfasser: Ageev, Dmitry S., Bagrov, Andrey A., Iliasov, Askar A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study λ ϕ 4 scalar field theory defined on the unramified extension of p-adic numbers Q p n . For different “space-time” dimensions n , we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the Coleman–Weinberg potential of p-adic field theory has structure very similar to that of its real cousin. We also study two formal limits of the effective potential, p → 1 and p → ∞ . We show that the p → 1 limit allows to reconstruct the canonical result for real field theory from the p-adic effective potential and provide an explanation of this fact. On the other hand, in the p → ∞ limit, the theory exhibits very peculiar behavior with emerging logarithmic terms in the effective potential, which has no analogue in real theories.
ISSN:1434-6044
1434-6052
1434-6052
DOI:10.1140/epjc/s10052-020-08442-5