Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea

This study determined antioxidant activity in terms of the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability and total phenolic content of black tea under different infusion and storage conditions. High performance liquid chromatography analysis identified caffeine, (−)-epigallocatechin, (−)-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-04, Vol.10 (8), p.2685
Hauptverfasser: Chang, Min-Yun, Lin, Yin-Yi, Chang, Yu-Chia, Huang, Wen-Ying, Lin, Wen-Shin, Chen, Cheng-You, Huang, Shu-Ling, Lin, Yung-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study determined antioxidant activity in terms of the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability and total phenolic content of black tea under different infusion and storage conditions. High performance liquid chromatography analysis identified caffeine, (−)-epigallocatechin, (−)-epicatechin-3-gallate, (−)-epigallocatechin-3-gallate and (−)-gallocatechin-3-gallate in the tea sample. The water–tea leaves weight ratio did not affect the DPPH scavenging ability. However, infusion temperature affected the DPPH scavenging activity and the total phenolic content. In the present study, the 50% inhibitory concentrations (IC50) for DPPH of black tea infused at 60 to 100 °C ranged from 100.0 ± 13.7 to 28.4 ± 4.8 μg/mL. The total phenolic content of black tea steeped at 60 to 100 °C ranged from 50.4 ± 5.2 to 178.6 ± 16.4 mg gallic acid equivalent/g dry leaf. Black tea exhibited increased antioxidant activity when the infusion temperature was increased. Regarding short-term storage, the DPPH scavenging ability and total phenolic content of black tea did not significantly change within 15 days. This result was consistent for storage temperatures of 4, 9, and 25 °C.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10082685