A global bifurcation result of a Neumann problem with indefinite weight
This paper is concerned with the bifurcation result of nonlinear Neumann problem \begin{equation} \left\{\begin{array}{lll} -\Delta_p u=& \lambda m(x)|u|^{p-2}u + f(\lambda,x,u)& \mbox{in} \ \Omega\\ \frac{\partial u}{\partial \nu}\hspace{0.55cm}= & 0 & \mbox{on} \ \partial\Omega. \e...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2004, Vol.2004 (9), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the bifurcation result of nonlinear Neumann problem \begin{equation} \left\{\begin{array}{lll} -\Delta_p u=& \lambda m(x)|u|^{p-2}u + f(\lambda,x,u)& \mbox{in} \ \Omega\\ \frac{\partial u}{\partial \nu}\hspace{0.55cm}= & 0 & \mbox{on} \ \partial\Omega. \end{array} \right. \end{equation} We prove that the principal eigenvalue $\lambda_1$ of the corresponding eigenvalue problem with $f\equiv 0,$ is a bifurcation point by using a generalized degree type of Rabinowitz. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2004.1.9 |