Replication Dynamics for Six Gram-Negative Bacterial Species during Bloodstream Infection

Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2021-08, Vol.12 (4), p.e0111421-e0111421
Hauptverfasser: Anderson, Mark T, Brown, Aric N, Pirani, Ali, Smith, Sara N, Photenhauer, Amanda L, Sun, Yuang, Snitkin, Evan S, Bachman, Michael A, Mobley, Harry L T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated
ISSN:2150-7511
2150-7511
DOI:10.1128/mBio.01114-21