Color Reduction in an Authenticate Live 3D Point Cloud Video Streaming System

In this paper, an authenticate live 3D point cloud video streaming system is presented, using a low cost 3D sensor camera, the Microsoft Kinect. The proposed system is implemented on a client-server network infrastructure. The live 3D video is captured from the Kinect RGB-D sensor, then a 3D point c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) 2016-09, Vol.5 (3), p.17
Hauptverfasser: Sultani, Zainab, Al-Tuma, Rana, Wefel, Sandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an authenticate live 3D point cloud video streaming system is presented, using a low cost 3D sensor camera, the Microsoft Kinect. The proposed system is implemented on a client-server network infrastructure. The live 3D video is captured from the Kinect RGB-D sensor, then a 3D point cloud is generated and processed. Filtering and compression are used to handle the spatial and temporal redundancies. A color histogram based conditional filter is designed to reduce the color information for each frame based on the mean and standard deviation. In addition to the designed filter, a statistical outlier removal filter is used. A certificate-based authentication is used where the client will verify the identity of the server during the handshake process. The processed 3D point cloud video is live streamed over a TCP/IP protocol to the client. The system is evaluated in terms of: compression ratio, total bytes per points, peak signal to noise ratio (PSNR), and Structural Similarity (SSIM) index. The experimental results demonstrate that the proposed video streaming system have a best case with SSIM 0.859, PSNR of 26.6 dB and with average compression ratio of 8.42 while the best average compression ratio case is about 15.43 with PSNR 18.5128 dB of and SSIM 0.7936.
ISSN:2073-431X
2073-431X
DOI:10.3390/computers5030017