Suffer together, bond together: Brain-to-brain synchronization and mutual affective empathy when sharing painful experiences

Previous behavioral studies have shown that sharing painful experiences can strengthen social bonds and promote mutual prosociality, yet the neural mechanisms underlying this phenomenon remain unclear. We hypothesized that sharing a painful experience induces brain-to-brain synchronization and mutua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2021-09, Vol.238, p.118249-118249, Article 118249
Hauptverfasser: Peng, Weiwei, Lou, Wutao, Huang, Xiaoxuan, Ye, Qian, Tong, Raymond Kai-Yu, Cui, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous behavioral studies have shown that sharing painful experiences can strengthen social bonds and promote mutual prosociality, yet the neural mechanisms underlying this phenomenon remain unclear. We hypothesized that sharing a painful experience induces brain-to-brain synchronization and mutual empathy for each other's pain between pain-takers and pain-observers, which then leads to enhanced social bonding. To test this hypothesis, we adopted an electroencephalographic (EEG) hyper-scanning technique to assess neuronal and behavioral activity during a Pain-Sharing task in which high- or low-intensity pain stimulation was randomly delivered to one participant of a dyad on different experimental trials. Single-brain analysis showed that sensorimotor α-oscillation power was suppressed more when expecting high-intensity pain than when expecting low-intensity pain similarly for self-directed or partner-directed pain. Dual-brain analysis revealed that expecting high-intensity pain induced greater brain-to-brain synchronization of sensorimotor α-oscillation phases between pain-takers and pain-observers than did expecting low-intensity pain. Mediation analysis further revealed that brain-to-brain synchronization of sensorimotor α-oscillations mediated the effects of pain-stimulation intensity on mutual affective sharing for partner-directed pain. This mutual affective empathy during the task predicted the social bonding, as indexed by prosocial inclinations measured after the task. These results support the hypothesis that sharing a painful experience triggers emotional resonance between pairs of individuals through brain-to-brain synchronization of neuronal α-oscillations recorded over the sensorimotor cortex, and this emotional resonance further strengthens social bonds and motivates prosocial behavior within pairs of individuals.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2021.118249