Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems

We study the following nonperiodic Hamiltonian system ż=JHz(t,z), where H∈C1(R×R2N,R) is the form H(t,z)=(1/2)B(t)z⋅z+R(t,z). We introduce a new assumption on B(t) and prove that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying a generalized linking theorem for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.195-214-614
Hauptverfasser: Qin, Wenping, Zhang, Jian, Zhao, Fukun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the following nonperiodic Hamiltonian system ż=JHz(t,z), where H∈C1(R×R2N,R) is the form H(t,z)=(1/2)B(t)z⋅z+R(t,z). We introduce a new assumption on B(t) and prove that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying a generalized linking theorem for strongly indefinite functionals, we establish the existence of homoclinic orbits for asymptotically quadratic nonlinearity as well as the existence of infinitely many homoclinic orbits for superquadratic nonlinearity.
ISSN:1085-3375
1687-0409
DOI:10.1155/2012/769232