Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems
We study the following nonperiodic Hamiltonian system ż=JHz(t,z), where H∈C1(R×R2N,R) is the form H(t,z)=(1/2)B(t)z⋅z+R(t,z). We introduce a new assumption on B(t) and prove that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying a generalized linking theorem for...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.195-214-614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following nonperiodic Hamiltonian system ż=JHz(t,z), where H∈C1(R×R2N,R) is the form H(t,z)=(1/2)B(t)z⋅z+R(t,z). We introduce a new assumption on B(t) and prove that the corresponding Hamiltonian operator has only point spectrum. Moreover, by applying a generalized linking theorem for strongly indefinite functionals, we establish the existence of homoclinic orbits for asymptotically quadratic nonlinearity as well as the existence of infinitely many homoclinic orbits for superquadratic nonlinearity. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/769232 |