Unveiling Potential of Gallium Ferrite (GaFeO3) as an Anode Material for Lithium-Ion Batteries

Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO3) as a potential a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-09, Vol.9 (38), p.39863-39872
Hauptverfasser: Bhattarai, Mohan K., Shweta, Shweta, Ashie, Moses D., Guddehalli Chandrappa, Shivaraju, Ale Magar, Birendra, Bastakoti, Bishnu P., Córdova Figueroa, Ubaldo M., Katiyar, Ram S., Weiner, Brad R., Morell, Gerardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO3) as a potential anode material for Li-ion battery applications. The GFO was synthesized by a one-step mechanochemistry-assisted solid-state method. The powder X-ray diffraction analysis confirms the presence of an orthorhombic phase with the Pc21 n space group. The photoelectron spectroscopy studies reveal the presence of Ga3+ and Fe3+ oxidation states of gallium and iron atoms in the GFO structure. The GFO was evaluated as an anode material for Li-ion battery applications, displaying a high discharge capacity of ∼887 mA h g–1 and retaining a stable capacity of ∼200 mA h g–1 over 450 cycles, with a Coulombic efficiency of 99.6 % at a current density of 100 mA g–1. Cyclic voltammetry studies confirm an alloy-conversion-based reaction mechanism in the GFO anode. Furthermore, density functional theory studies reveal the reaction mechanism during cycling and Li-ion diffusion pathways in the GFO anode. These results strongly suggest that the GFO could be an alternative anode material in LIBs.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c05437