Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors
Currently, most plastic waste stems from packaging materials, with a large proportion of this waste either discarded by incineration or used to derive fuel. Accordingly, there is growing interest in the use of pyrolysis to chemically recycle non-recyclable (i.e., via mechanical means) plastic waste...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-11, Vol.28 (23), p.7815 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, most plastic waste stems from packaging materials, with a large proportion of this waste either discarded by incineration or used to derive fuel. Accordingly, there is growing interest in the use of pyrolysis to chemically recycle non-recyclable (i.e., via mechanical means) plastic waste into petrochemical feedstock. This comparative study compared pyrolysis characteristics of two types of reactors, namely fixed and fluidized bed reactors. Kinetic analysis for pyrolysis of SRF was also performed. Based on the kinetic analysis of the pyrolytic reactions using differential and integral methods applied to the TGA results, it was seen that the activation energy was lower in the initial stage of pyrolysis. This trend can be mainly attributed to the initial decomposition of PP components, which was subsequently followed by the decomposition of PE. From the kinetic analysis, the activation energy corresponding to the rate of pyrolysis reaction conversion was obtained. In conclusion, pyrolysis carried out using the fluidized bed reactor resulted in a more active decomposition of SRF. The relatively superior performance of this reactor can be attributed to the increased mass and heat transfer effects caused by fluidizing gases, which result in greater gas yields. Regarding the characteristics of liquid products generated during pyrolysis, it was seen that the hydrogen content in the liquid products obtained from the fluidized bed reactor decreased, leading to the formation of oils with higher molecular weights and higher C/H ratios, because the pyrolysis of SRF in the fluidized bed reactor progressed more rapidly than that in the fixed bed reactor. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28237815 |