Astragaloside IV relieves passive heymann nephritis and podocyte injury by suppressing the TRAF6/NF-κb axis
The pathogenesis of membranous nephropathy (MN) involves podocyte injury that is attributed to inflammatory responses induced by local immune deposits. Astragaloside IV (AS-IV) is known for its robust anti-inflammatory properties. Here, we investigated the effects of AS-IV on passive Heymann nephrit...
Gespeichert in:
Veröffentlicht in: | Renal failure 2024-12, Vol.46 (2), p.2371992 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pathogenesis of membranous nephropathy (MN) involves podocyte injury that is attributed to inflammatory responses induced by local immune deposits. Astragaloside IV (AS-IV) is known for its robust anti-inflammatory properties. Here, we investigated the effects of AS-IV on passive Heymann nephritis (PHN) rats and TNF-α-induced podocytes to determine the underlying molecular mechanisms of MN. Serum biochemical parameters, 24-h urine protein excretion and renal histopathology were evaluated in PHN and control rats. The expression of tumor necrosis factor receptor associated factor 6 (TRAF6), the phosphorylation of nuclear factor kappa B (p-NF-κB), the expression of associated proinflammatory cytokines (TNF-α, IL-6 and IL-1β) and the ubiquitination of TRAF6 were measured in PHN rats and TNF-α-induced podocytes. We detected a marked increase in mRNA expression of TNF-α, IL-6 and IL-1β and in the protein abundance of p-NF-κB and TRAF6 within the renal tissues of PHN rats and TNF-α-induced podocytes. Conversely, there was a reduction in the K48-linked ubiquitination of TRAF6. Additionally, AS-IV was effective in ameliorating serum creatinine, proteinuria, and renal histopathology in PHN rats. This effect was concomitant with the suppression of NF-κB pathway activation and decreased expression of TNF-α, IL-6, IL-1β and TRAF6. AS-IV decreased TRAF6 levels by promoting K48-linked ubiquitin conjugation to TRAF6, which triggered ubiquitin-mediated degradation. In summary, AS-IV averted renal impairment in PHN rats and TNF-α-induced podocytes, likely by modulating the inflammatory response through the TRAF6/NF-κB axis. Targeting TRAF6 holds therapeutic promise for managing MN. |
---|---|
ISSN: | 0886-022X 1525-6049 1525-6049 |
DOI: | 10.1080/0886022X.2024.2371992 |