The promising performance of manganese gluconate as a liquid redox sulfur recovery agent against oxidative degradation

This work studied the oxidative degradation performance of manganese gluconate as a liquid redox sulfur recovery (LRSR) agent. The degradation of gluconate in an aerated sulfide containing 0.1 M manganese/0.8 M gluconate/pH 13 solution was 11% in 47 h and 20% in 100 h of reaction time. With the tota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2021-04, Vol.7 (4), p.e06743-e06743, Article e06743
Hauptverfasser: Widodo, Andreas, Yaswari, Yestria, Mariyana, Rina, Arif, Aditya Farhan, Prakoso, Tirto, Adhi, Tri Partono, Soerawidjaja, Tatang Hernas, Purwadi, Ronny, Indarto, Antonius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work studied the oxidative degradation performance of manganese gluconate as a liquid redox sulfur recovery (LRSR) agent. The degradation of gluconate in an aerated sulfide containing 0.1 M manganese/0.8 M gluconate/pH 13 solution was 11% in 47 h and 20% in 100 h of reaction time. With the total price of chelates being more or less comparable, these were superior to the degradation resistance of EDTA chelate in a solution of 0.1 M iron/0.2 M EDTA/pH 8 which degraded by about 30% in 47 h, and NTA in Fe-NTA (0.1 M metal/0.2 M chelate/pH 6.5), which was degraded by 40% in 100 h of reaction time. At pH of 13, 0.1 M Metal, and 0.8 M gluconate, manganese degraded gluconate more severely than iron and copper. At a lower chelate to metal molar ratio (RCM) of 2 and as well as at a lower pH of 10, the manganese gluconate degradation, expressed as relative concentration to its initial concentration, was faster than at RCM of 8 and pH of 13. All of these observations can be explained among others by the well-known Fenton reaction hydroxyl radicals mechanism as the main cause of the degradation process. Manganese gluconate; Sulfur recovery; Natural gas; LRSR; NTA; EDTA; Degradation.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e06743