Facile Synthesis of MXene/MnO2 Nanocomposites for Efficient Removal of Radionuclide Uranium

The efficient removal of radionuclide uranium is crucial for sustainable nuclear energy and achieving a zero-carbon loop. In this study, we synthesized MXene/MnO2 nanocomposites and evaluated their ability to adsorb and reduce uranium. The results showed that the nanocomposites achieved a uranium re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2023-05, Vol.13 (5), p.804
Hauptverfasser: Wang, Ling, Liu, Yi-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient removal of radionuclide uranium is crucial for sustainable nuclear energy and achieving a zero-carbon loop. In this study, we synthesized MXene/MnO2 nanocomposites and evaluated their ability to adsorb and reduce uranium. The results showed that the nanocomposites achieved a uranium removal rate of 99% and an adsorption capacity of 696 mg/g. Adsorption experiments were conducted under different conditions, including pH, cation, anion, and humic acid, and the uranium removal rate by the composite remained high at 91%, 70%, and 60% under the influence of pH = 4.97, 1.0 mM CaCl2, and 20 mg/L humic acid, respectively. The XRD and SEM analyses revealed that the uranium element was removed by the reduction and fixation of the composite material. These findings indicate that the MXene/MnO2 composite is an effective adsorption cleaning agent for the purification of radioactive nuclear wastewater, which has significant implications for pollution control.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13050804