Klasifikasi Jenis Kulit Wajah menggunakan Backpropagation Neural Networks Berbasis GLCM

ABSTRAKKulit wajah sangat sensitif dibandingkan dengan bagian tubuh lainnya. Ada beberapa jenis kulit wajah, yaitu normal, berminyak, dan kering. Namun, terkadang mengidentifikasi jenis kulit wajah seseorang dengan benar bisa menjadi masalah karena terdapat lima jenis kulit wajah yang berbeda. Untuk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Elkomika 2023-07, Vol.11 (3), p.705
Hauptverfasser: HERYANTO, M. ARY, JUANANTA, DENY, SADANARESWARI, AGATA, WULANDARI, SARI AYU
Format: Artikel
Sprache:eng ; ind
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRAKKulit wajah sangat sensitif dibandingkan dengan bagian tubuh lainnya. Ada beberapa jenis kulit wajah, yaitu normal, berminyak, dan kering. Namun, terkadang mengidentifikasi jenis kulit wajah seseorang dengan benar bisa menjadi masalah karena terdapat lima jenis kulit wajah yang berbeda. Untuk mengatasi kesulitan dalam mengidentifikasi jenis kulit wajah, pada penelitian ini diterapkan metode klasifikasi Backpropagation Neural Network berbasis GLCM. Penelitian ini menggunakan tiga jenis kulit wajah, yaitu: kering, berminyak, dan normal. Sedangkan untuk mencari model arsitektur yang tepat dilakukan dengan cara variasi jumlah hidden layer dan jumlah neuron per hidden layer. Setelah dilakukan beberapa pengujian didapatkan hasil akurasi 96.70% untuk model sembilan lapisan tersembunyi dengan enam neuron pada tiap lapisan tersembunyi.Kata kunci: kulit wajah, klasifikasi, backpropagation neural network, GLCM. ABSTRACTFacial skin is very sensitive compared to other body parts. There are several facial skin types: normal, oily, and dry. However, sometimes correctly identifying a person's facial skin type can be problematic because there are five different skin types. To overcome difficulties in identifying facial skin types, this study applied the GLCM-based Backpropagation Neural Networks classification method. This study used three types of facial skin, namely: dry, oily, and normal. Meanwhile, finding the right architectural model is done by varying the number of hidden layers and the number of neurons per hidden layer. After several tests, the results obtained an accuracy of 96.70% for the nine hidden layers model with six neurons for each hidden layer.Keywords: facial skin, classification, backpropagation neural network, GLCM.
ISSN:2338-8323
2459-9638
DOI:10.26760/elkomika.v11i3.705