Hybrid Deep Learning-Based Epidemic Prediction Framework of COVID-19: South Korea Case
The emergence of COVID-19 and the pandemic have changed and devastated every aspect of our lives. Before effective vaccines are widely used, it is important to predict the epidemic patterns of COVID-19. As SARS-CoV-2 is transferred primarily by droplets of infected people, the incorporation of human...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-12, Vol.10 (23), p.8539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence of COVID-19 and the pandemic have changed and devastated every aspect of our lives. Before effective vaccines are widely used, it is important to predict the epidemic patterns of COVID-19. As SARS-CoV-2 is transferred primarily by droplets of infected people, the incorporation of human mobility is crucial in epidemic dynamics models. This study expands the susceptible–exposed–infected–recovered compartment model by considering human mobility among a number of regions. Although the expanded meta-population epidemic model exhibits better performance than general compartment models, it requires a more accurate estimation of the extended modeling parameters. To estimate the parameters of these epidemic models, the meta-population model is incorporated with deep learning models. The combined deep learning model generates more accurate modeling parameters, which are used for epidemic meta-population modeling. In order to demonstrate the effectiveness of the proposed hybrid deep learning framework, COVID-19 data in South Korea were tested, and the forecast of the epidemic patterns was compared with other estimation methods. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10238539 |