Continuous Microevolution Accelerates Disease Progression during Sequential Episodes of Infection

Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease sever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2020-03, Vol.30 (9), p.2978-2988.e3
Hauptverfasser: Harrison, Alistair, Hardison, Rachael L., Fullen, Audra R., Wallace, Rachel M., Gordon, David M., White, Peter, Jennings, Ryan N., Justice, Sheryl S., Mason, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies. [Display omitted] •Establishment of a model for sequential episodes of otitis media•In vivo-adapted Haemophilus promotes biofilm formation, inflammation, and fibrosis•Microevolution of hemoglobin uptake and lipooligosaccharide biosynthesis genes•Intracellular bacterial communities remain following clinical resolution of disease Harrison et al. develop a sequential model of otitis media (OM) to investigate microevolution through genetic mutations that modulate disease severity. OM-adapted strains promote increased biofilm, inflammation, stromal fibrosis, and intracellular bacterial community (IBC) development. IBCs remain one month following clinical resolution of infection, suggesting a nidus for recurrent OM.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2020.02.019