Joint Inversion for Sound Speed Field and Moving Source Localization in Shallow Water

This paper develops a joint approach for time-evolving sound speed field (SSF) inversion and moving source localization in shallow water environment. The SSF is parameterized in terms of the first three empirical orthogonal function (EOF) coefficients. The approach treats both first three EOF coeffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2019-09, Vol.7 (9), p.295
Hauptverfasser: Dai, Miao, Li, Yaan, Yang, Kunde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a joint approach for time-evolving sound speed field (SSF) inversion and moving source localization in shallow water environment. The SSF is parameterized in terms of the first three empirical orthogonal function (EOF) coefficients. The approach treats both first three EOF coefficients and source parameters (e.g., source depth, range and speed) as state vectors of evolving with time, and a measurement vector that incorporates acoustic information via a vertical line array (VLA), and then the inversion problem is formulated in a state-space model. The processors of the extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) are used to estimate the evolution of those six parameters. Simulation results verify the proposed approach, which enable it to invert the SSF and locate the moving source simultaneously. The root-mean-square-error (RMSE) is employed to evaluate the effectiveness of this proposed approach. The interfile comparison shows that the EnKF outperform the EKF. For the EnKF, the robustness of the approach under the sparse vertical array configuration is verified. Moreover, the impact of the source-VLA deployment on the estimation is also concerned.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse7090295