The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value

Romania has a wide variety of local landraces and heirloom genotypes. Our study aims to assess the performance of twenty halotolerant tomato landraces, collected from areas with medium and high levels of soil salinity, in terms ofthe accumulation of antioxidant compounds in fruits and to cluster the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2020-04, Vol.10 (4), p.500
Hauptverfasser: Sumalan, Renata M., Ciulca, Sorin I., Poiana, Mariana A., Moigradean, Diana, Radulov, Isidora, Negrea, Monica, Crisan, Manuela E., Copolovici, Lucian, Sumalan, Radu L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Romania has a wide variety of local landraces and heirloom genotypes. Our study aims to assess the performance of twenty halotolerant tomato landraces, collected from areas with medium and high levels of soil salinity, in terms ofthe accumulation of antioxidant compounds in fruits and to cluster them according to their nutraceutical components. The tomatoes used in the study were harvested once they had attained full ripeness and then analyzed for lycopene (Lyc), ascorbic acid content (AsA), total phenolic content (TPC), and total antioxidant capacity (TAC). The results revealed major differences between genotypes in terms of nutraceutical values. According to principal component analysis, the tomato landraces were grouped into five clusters, characterized by different proportions of compounds with antioxidant activity. The high/moderate nutritional values of Lyc, TAC, TPC, and AsA were obtained from varieties taken from local lands with high soil salinity, over 6.5 dS m−1. These findings support the idea that metabolites and secondary antioxidants are involved in the process of stress adaptation, thereby increasing salinity tolerance in tomatoes. Our results show that there are tomato landraces with a tolerance of adaptation to conditions of high soil salinity and provide information on their ability to synthesize molecules with antioxidant functions that protect plants against oxidative damage.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy10040500