Fractional Laplacian system involving doubly critical nonlinearities in $\mathbb{R}^N

In this article, we are interested in a fractional Laplacian system in $\mathbb{R}^N$, which involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinearities. By using variational methods, we investigate the extremals of the corresponding best fractional Hardy–Sobolev con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2017-07, Vol.2017 (57), p.1-17
Hauptverfasser: Li Wang, Binlin Zhang, Haijin Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we are interested in a fractional Laplacian system in $\mathbb{R}^N$, which involves critical Sobolev-type nonlinearities and critical Hardy–Sobolev-type nonlinearities. By using variational methods, we investigate the extremals of the corresponding best fractional Hardy–Sobolev constant and establish the existence of solutions. To our best knowledge, our main results are new in the study of the fractional Laplacian system.
ISSN:1417-3875
DOI:10.14232/ejqtde.2017.1.57