Effects of calcium level and source, formic acid, and phytase on phytate degradation and the microbiota in the digestive tract of broiler chickens
Diet acidification, dietary calcium (Ca) level, and phytase supplementation are known influences on the microbial community in the digestive tract and on phosphorus (P) utilization of broiler chickens. Effects of dietary factors and microbiota on P utilization may be linked because microorganisms pr...
Gespeichert in:
Veröffentlicht in: | Animal microbiome 2021-03, Vol.3 (1), p.23-23, Article 23 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diet acidification, dietary calcium (Ca) level, and phytase supplementation are known influences on the microbial community in the digestive tract and on phosphorus (P) utilization of broiler chickens. Effects of dietary factors and microbiota on P utilization may be linked because microorganisms produce enzymes that release P from phytate (InsP
), the main source of P in plant feedstuffs. This study aimed to detect linkages between microbiota and InsP
degradation by acidifying diets (i.e., replacing Ca carbonate (CaCO
) by Ca formate or adding formic acid to CaCO
-containing diets), varying Ca levels, and supplementing phytase in a three-factorial design. We investigated i) the microbial community and pH in the digestive tract, ii) prececal (pc) P and Ca digestibility, and iii) InsP
degradation.
All factors under investigation influenced digesta pH and the microbiota composition. Predicted functionality and relative abundance of microorganisms indicated that diets influenced the potential contribution of the microbiota on InsP degradation. Values of InsP
degradation and relative abundance of the strains Lactobacillus johnsonii and Lactobacillus reuteri were correlated. Phytase supplementation increased pc InsP
disappearance, with differences between Ca levels, and influenced concentrations of lower inositol phosphate isomers in the digestive tract. Formic acid supplementation increased pc InsP
degradation to myo-inositol. Replacing CaCO
by Ca-formate and the high level of these Ca sources reduced pc InsP
disappearance, except when the combination of CaCO
+ formic acid was used. Supplementing phytase to CaCO
+ formic acid led to the highest InsP
disappearance (52%) in the crop and increased myo-inositol concentration in the ileum digesta. Supplementing phytase leveled the effect of high Ca content on pc InsP
disappearance.
The results point towards a contribution of changing microbial community on InsP
degradation in the crop and up to the terminal ileum. This is indicated by relationships between InsP
degradation and relative abundance of phosphatase-producing strains. Functional predictions supported influences of microbiota on InsP
degradation. The extent of such effects remains to be clarified. InsP
degradation may also be influenced by variation of pH caused by dietary concentration and solubility of the Ca in the feed. |
---|---|
ISSN: | 2524-4671 2524-4671 |
DOI: | 10.1186/s42523-021-00083-7 |