Signature of quantum Griffiths singularity state in a layered quasi-one-dimensional superconductor
Quantum Griffiths singularity was theoretically proposed to interpret the phenomenon of divergent dynamical exponent in quantum phase transitions. It has been discovered experimentally in three-dimensional (3D) magnetic metal systems and two-dimensional (2D) superconductors. But, whether this state...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-11, Vol.9 (1), p.4656-9, Article 4656 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum Griffiths singularity was theoretically proposed to interpret the phenomenon of divergent dynamical exponent in quantum phase transitions. It has been discovered experimentally in three-dimensional (3D) magnetic metal systems and two-dimensional (2D) superconductors. But, whether this state exists in lower dimensional systems remains elusive. Here, we report the signature of quantum Griffiths singularity state in quasi-one-dimensional (1D) Ta
2
PdS
5
nanowires. The superconducting critical field shows a strong anisotropic behavior and a violation of the Pauli limit in a parallel magnetic field configuration. Current-voltage measurements exhibit hysteresis loops and a series of multiple voltage steps in transition to the normal state, indicating a quasi-1D nature of the superconductivity. Surprisingly, the nanowire undergoes a superconductor-metal transition when the magnetic field increases. Upon approaching the zero-temperature quantum critical point, the system uncovers the signature of the quantum Griffiths singularity state arising from enhanced quenched disorders, where the dynamical critical exponent becomes diverging rather than being constant.
Whether the quantum Griffiths singularity state exists in one-dimensional (1D) systems remains elusive. Here, Zhang et al. report violation of the Pauli limit in the superconducting critical field and multiple phase transitions in the current-voltage hysteresis loops in a Ta
2
PdS
5
nanowire, suggesting signatures of quasi-1D quantum Griffith singularity. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-07123-y |