Combined Effect of glass fiber and polypropylene fiber on mechanical property of self-compacting concrete

Self-compacting concrete is a state-of-the-art technology actively used all over the world in the construction field. This concrete, which has high performance, can be used for casting heavily reinforced sections, in places where vibrators have restricted access for compaction and when complex shape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inzhenerno-stroitelʹnyĭ zhurnal 2016-09, Vol.62 (2), p.26-31
Hauptverfasser: Taheri Fard, A.R., Soheili, H., Ramzani Movafagh, S., Farnood Ahmadi, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-compacting concrete is a state-of-the-art technology actively used all over the world in the construction field. This concrete, which has high performance, can be used for casting heavily reinforced sections, in places where vibrators have restricted access for compaction and when complex shapes of formwork are used. Otherwise it may be impossible to cast and the obtained surface is superior to the one achieved with the use of conventional concrete. On the other hand, using various types of fibers can enhance mechanical and dynamical characteristics of concrete as well as reduce cracking in concrete. In this study, we research both combined and individual effects of polypropylene and glass fiber on mechanical and rheological properties of self-compacting concrete. In order to do so, 10 specimens have been made including those containing (A) polypropylene fiber with volume fraction of 0.1, 0.2, 0.3 and glass fiber with volume fraction of 0.1, 0.2, 0.3 and (B) combined polypropylene and glass fiber. The results of these experiments have shown that combined polypropylene and glass fiber can enhance tensile and bending strengths. In addition, these additives dramatically increases toughness of concrete.
ISSN:2071-4726
2071-0305
DOI:10.5862/MCE.62.3