Nucleonic Direct Urca Processes and Cooling of the Massive Neutron Star by Antikaon Condensations

Nucleonic direct Urca processes and cooling of the massive neutron stars are studied by considering antikaon condensations. Calculations are performed in the relativistic mean field and isothermal interior approximations. Neutrino energy losses of the nucleonic direct Urca processes are reduced when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Astronomy 2020, Vol.2020 (2020), p.1-7
Hauptverfasser: Han, J. L., Liu, Cheng Zhi, Ding, Wen Bo, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nucleonic direct Urca processes and cooling of the massive neutron stars are studied by considering antikaon condensations. Calculations are performed in the relativistic mean field and isothermal interior approximations. Neutrino energy losses of the nucleonic direct Urca processes are reduced when the optical potential of antikaons changes from −80 to −130 MeV. If the center density of the massive neutron stars is a constant, the masses taper off with the optical potential of antikaons, and neutrino luminosities of the nucleonic direct Urca processes decrease for ρCN=0.5 fm−3 but first increase and then decrease for larger ρCN. Large optical potential of antikaons results in warming of the nonsuperfluid massive neutron stars. Massive neutron stars turn warmer with the protonic S01 superfluids. However, the decline of the critical temperatures of the protonic S01 superfluids for the large optical potential of antikaons can speed up the cooling of the massive neutron stars.
ISSN:1687-7969
1687-7977
DOI:10.1155/2020/6146913