Scaling computational genomics to millions of individuals with GPUs

Current genomics methods are designed to handle tens to thousands of samples but will need to scale to millions to match the pace of data and hypothesis generation in biomedical science. Here, we show that high efficiency at low cost can be achieved by leveraging general-purpose libraries for comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2019-11, Vol.20 (1), p.228-228, Article 228
Hauptverfasser: Taylor-Weiner, Amaro, Aguet, François, Haradhvala, Nicholas J, Gosai, Sager, Anand, Shankara, Kim, Jaegil, Ardlie, Kristin, Van Allen, Eliezer M, Getz, Gad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current genomics methods are designed to handle tens to thousands of samples but will need to scale to millions to match the pace of data and hypothesis generation in biomedical science. Here, we show that high efficiency at low cost can be achieved by leveraging general-purpose libraries for computing using graphics processing units (GPUs), such as PyTorch and TensorFlow. We demonstrate > 200-fold decreases in runtime and ~ 5-10-fold reductions in cost relative to CPUs. We anticipate that the accessibility of these libraries will lead to a widespread adoption of GPUs in computational genomics.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1836-7