Solving the Independent Domination Problem by the Quantum Approximate Optimization Algorithm
In the wake of quantum computing advancements and quantum algorithmic progress, quantum algorithms are increasingly being employed to address a myriad of combinatorial optimization problems. Among these, the Independent Domination Problem (IDP), a derivative of the Domination Problem, has practical...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2024-12, Vol.26 (12), p.1057 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the wake of quantum computing advancements and quantum algorithmic progress, quantum algorithms are increasingly being employed to address a myriad of combinatorial optimization problems. Among these, the Independent Domination Problem (IDP), a derivative of the Domination Problem, has practical implications in various real-world scenarios. Despite this, existing classical algorithms for the IDP are plagued by high computational complexity, and quantum algorithms have yet to tackle this challenge. This paper introduces a Quantum Approximate Optimization Algorithm (QAOA)-based approach to address the IDP. Utilizing IBM's qasm_simulator, we have demonstrated the efficacy of the QAOA in solving the IDP under specific parameter settings, with a computational complexity that surpasses that of classical methods. Our findings offer a novel avenue for the resolution of the IDP. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e26121057 |