Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors

Electronic skin is driving the next generation of cutting-edge wearable electronic products due to its good wearability and high accuracy of information acquisition. However, it remains a challenge to fulfill the requirements on detecting full-range human activities with existing flexible strain sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research (Washington) 2020, Vol.2020, p.2038560-2038560
Hauptverfasser: Lu, Yao, Qu, Xinyu, Zhao, Wen, Ren, Yanfang, Si, Weili, Wang, Wenjun, Wang, Qian, Huang, Wei, Dong, Xiaochen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic skin is driving the next generation of cutting-edge wearable electronic products due to its good wearability and high accuracy of information acquisition. However, it remains a challenge to fulfill the requirements on detecting full-range human activities with existing flexible strain sensors. Herein, highly stretchable, sensitive, and multifunctional flexible strain sensors based on MXene- (Ti C T -) composited poly(vinyl alcohol)/polyvinyl pyrrolidone double-network hydrogels were prepared. The uniformly distributed hydrophilic MXene nanosheets formed a three-dimensional conductive network throughout the hydrogel, endowing the flexible sensor with high sensitivity. The strong interaction between the double-network hydrogel matrix and MXene greatly improved the mechanical properties of the hydrogels. The resulting nanocomposited hydrogels featured great tensile performance (2400%), toughness, and resilience. Particularly, the as-prepared flexible pressure sensor revealed ultrahigh sensitivity (10.75 kPa ) with a wide response range (0-61.5 kPa), fast response (33.5 ms), and low limit of detection (0.87 Pa). Moreover, the hydrogel-based flexible sensors, with high sensitivity and durability, could be employed to monitor full-range human motions and assembled into some aligned devices for subtle pressure detection, providing enormous potential in facial expression and phonation recognition, handwriting verification, healthy diagnosis, and wearable electronics.
ISSN:2639-5274
2639-5274
DOI:10.34133/2020/2038560