Effectiveness of Feature Extraction by PCA-Based Detection and Naive Bayes Classifier for Glaucoma Images

After cataract, glaucoma is one of the second leading retinal diseases in the world. This paper presents the methodology to detect the glaucoma using principal component analysis. The images are involved in dilation as a preprocessing, enhancement using the contrast limited adaptive histogram equali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Digital Multimedia Broadcasting 2022-10, Vol.2022, p.1-5
Hauptverfasser: Shiny Christobel, J., Vimala, D., Joshan Athanesious, J., Christopher Ezhil Singh, S., Murugan, Sivaraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After cataract, glaucoma is one of the second leading retinal diseases in the world. This paper presents the methodology to detect the glaucoma using principal component analysis. The images are involved in dilation as a preprocessing, enhancement using the contrast limited adaptive histogram equalization method, and followed by the extraction of features using principal component analysis. The extracted features are classified using support vector machine, Naive Bayes, and K-nearest neighbor classifiers. Comparing with other classifiers, the Naive Bayes provides high accuracy of 95% which demonstrates the effectiveness of the feature extraction and the classifier.
ISSN:1687-7578
1687-7586
DOI:10.1155/2022/4802872