Nitrogen variable rate in pastures using optical sensors

The use of optical sensors to identify the nutritional needs of agricultural crops has been the subject of several studies using precision agriculture techniques. In this work, we sought to overcome the lack of research evaluating the use of these techniques in the management of nitrogen (N) fertili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semina. Ciências agrárias : revista cultural e científica da Universidade Estadual de Londrina 2019-11, Vol.40 (6Supl2), p.2917
Hauptverfasser: Corrêdo, Lucas de Paula, Pinto, Francisco de Assis de Carvalho, Queiroz, Domingos Savio, Valente, Domingos Sárvio Magalhães, Villar, Flora Maria de Melo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of optical sensors to identify the nutritional needs of agricultural crops has been the subject of several studies using precision agriculture techniques. In this work, we sought to overcome the lack of research evaluating the use of these techniques in the management of nitrogen (N) fertilizer in pastures. We evaluated the methodology of the nitrogen sufficiency index (NSI) in N management at variable rates (VR) using a portable chlorophyll meter. In addition, the use of color vegetation indices generated from a digital camera was evaluated as a low-cost alternative. The work was conducted in four management cycles at different times of year, evaluating the productivity and quality of Brachiaria brizantha cv. Xaraés grass. Three NSIs (0.85, 0.90 and 0.95) were evaluated, applying complementary doses of N according to the response of monitored plots using a chlorophyll meter and comparing the productivity and leaf N content of these treatments to the reference treatment (TREF), which received a single dose of N (150 kg ha-1). Together with these treatments, plots without N application (control) were analyzed, totaling five treatments with six replications in a completely randomized design. The dry mass productivity and N leaf concentration of the VR treatments were statistically equal to TREF in all management cycles (P < 0.05). Most color vegetation indices correlated significantly (P < 0.05) to the chlorophyll readings. The use of NSI methodology in pastures allows the same productivity gains, with significant input savings. In addition, the use of digital cameras presents itself as a viable alternative to monitoring the N status in pastures.
ISSN:1676-546X
1679-0359
DOI:10.5433/1679-0359.2019v40n6Supl2p2917