A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when...
Gespeichert in:
Veröffentlicht in: | Épijournal de géométrie algébrique 2018-09, Vol.2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric. |
---|---|
ISSN: | 2491-6765 2491-6765 |
DOI: | 10.46298/epiga.2018.volume2.4209 |